The Stereoselective Formation of Naphtho[1,2-c]pyrans, Angular Analogues of the Aphin-derived Glucoside B, by an Intramolecular Version of the Mukaiyama Reaction of 4-NaphthyIdioxolanes

Robin G. F. Giles, ${ }^{*}+{ }^{+}{ }^{a}$ Ivan R. Green, ${ }^{\boldsymbol{b}}$ Lorraine S. Knight, ${ }^{a}$ Vanessa R. Lee Son ${ }^{a}$ and Selwyn C. Yorke ${ }^{\text {a }}$
a Department of Chemistry, University of Cape Town, Rondebosch, Cape, 7700, South Africa
${ }^{\text {b }}$ Department of Chemistry, University of the Western Cape, Bellville, Cape, 7535, South Africa

Stereoselective isomerisation of the pair of epimers re/-($2 R, 4 S, 5 S$)- and rel-($2 S, 4 S, 5 S$)-4-(4-isopro-poxy-5,7-dimethoxynaphthalene-2-yl)-2,5-dimethyl dioxolane 12 with an excess of a mixture of titanium tetrachloride and titanium tetraisopropoxide afforded the two products re/-(1R,3S,4S)-3,4-dihydro-4-hydroxy-6-isopropoxy-7,9-dimethoxy-1,3-dimethylnaphtho [1,2-c]pyran 13, and the C-1 epimer 15. Isomerisation of re/-(2S,4R,5S)-4-(8-bromo-4-isopropoxy-5,7-dimethoxynaphthalen-2-yl)-2,5-dimethyl dioxolane 36 with an excess of titanium tetrachloride alone afforded rel-(1S,3S,4R)-3.4-dihydro-4-hydroxy-6-isopropoxy-7,9-dimethoxy-1,3-dimethyInaphtho[1,2-c]pyran 38 and its 5 -bromo derivative 39, the latter being formed through bromine migration on the aromatic nucleus.

Our interest in the synthesis of naphthopyrans related to the aphin-derived glucoside B $\mathbf{1}^{1}$ and the results described in the preceding paper ${ }^{2}$ led to our formulating a new strategy for the construction of naphthopyrans through the stereoselective isomerisation of naphthyldioxolanes using titanium tetrachloride. ${ }^{3}$ Several other entirely unrelated intramolecular examples ${ }^{4-11}$ of the Mukaiyama reaction ${ }^{12,13}$ have been reported both prior to and during the course of this investigation. In this paper we describe a preliminary study of the titanium tetrachloride-induced isomerisation of 2,5-dimethyl-4-(2-naphthyl)dioxolanes. \ddagger

1

Results and Discussion

The desired isomerisation is that depicted in Scheme 1, in which the relative stereochemistry at C-4 and C-5 in the initial dioxolane $2 \S$ determines that established at C-3 and C-4 in the product naphthopyran 4. At the inception of this work, ${ }^{14}$ it was expected that the $\mathrm{C}-1$ methyl in the product naphthopyran 4 would assume the pseudoaxial orientation through the intermediacy of the planar oxocarbenium ion 3 in order to minimize peri interaction with the neighbouring isopropoxy substituent, although recent work ${ }^{15}$ has shown that other factors may be implicated.

Isopropyl was chosen to protect the C-10 oxygen of the target naphthopyran 4 since it was intended to selectively remove it with boron trichloride ${ }^{16}$ and oxidise the derived phenol to the racemate of the dimethyl ether of Quinone A^{17} to

[^0]

Scheme 1
confirm the structure of product 4 including the relative stereochemistry.

To test this isomerisation hypothesis, the naphthyldioxolanes 5 were chosen as the synthetic targets, as their relative stereochemistry at C-4 and C-5 was deemed the easiest to construct, even though it was appreciated that the derived naphthopyran 6, if formed, would have the incorrect stereochemistry for the C-4 hydroxy group of Glucoside B (Scheme 2).

The alcohol 7 was oxidised with activated manganese dioxide ${ }^{18}$ to afford the aldehyde 8. This was treated with ethylidenetriphenylphosphorane to afford a stereochemical mixture of the olefins 9 which reacted, in turn, with bis(acetonitrile)dichloropalladium(II) to yield the (E)-isomer 10 as the sole product in high yield. ${ }^{19}$ This stereochemically pure olefin
reacted with osmium tetroxide to afford the diol $\mathbf{1 1}$ as a single racemate in a yield of 91%. Attempted conversion of the E-olefin 10 into the corresponding epoxide failed with metachloroperbenzoic acid. Several products were formed two of which were chromatographically separated from the mixture and identified as the 1,2- and 1,4-naphthoquinones, 16 and 17, formed in yields of 13 and 10% respectively. Preferential electrophilic attack on the dimethoxy-substituted aromatic ring rather than the olefin precluded the facile formation of the desired epoxide, which could have been subjected to stereoselective ring-opening to form the erythro-diol (cf. 35) required for the formation of the dioxolane 2, and thence 4, the Glucoside B analogue.

The dioxolane 12 corresponding to the diol 11 was prepared by reaction of the latter with acetaldehyde, either using trifluoroacetic acid in ether, which gave the product 12 in a yield of 63%, or using toluene-p-sulfonic acid in benzene which afforded the same product in a yield of 76%. In each case, the dioxolane obtained was a single stereoisomer, although the relative stereochemistry at $\mathrm{C}-2$ was not established, since it was considered irrelevant if C-2 was to become planar (cf. 3) in the subsequent reaction of the dioxolane 5 .

$7 \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
8 R
$8 \mathrm{R}=\mathrm{CHO}$

$10 R=$

$12 R=$

$11 R=$

16

$13 \mathrm{R}=\mathrm{H}$
$14 \mathrm{R}=\mathrm{Ac}$

15

17

The dioxolane 12 was treated with an excess of both titanium tetrachloride and titanium tetraisopropoxide, whereupon two new compounds were isolated, as well as the starting dioxolane 12 and its precursor, the diol 11. The molecular ion in the mass spectrum of each new compound appeared at $m / z 346$, confirming that both were isomeric with dioxolane 12. The gross features of ${ }^{1} \mathrm{H}$ NMR spectra of the new compounds were also very similar. In addition to three aromatic protons for each (two meta coupled doublets and a singlet), and signals for one isopropoxy and two methoxy substituents, each compound showed two three-proton methyl doublets, three methine protons and an exchangeable proton. For the higher R_{F} compound, obtained in a yield of 39% and assigned structure 13, 1-H appeared as a quartet $(J 7 \mathrm{~Hz})$ at $\delta 5.38,3-\mathrm{H}$ as a doublet of quartets ($J 1$ and 7 Hz) at $\delta 3.84$, and $4-\mathrm{H}$ as a
doublet ($J 1 \mathrm{~Hz}$) at $\delta 4.16$, broadened through further coupling to the adjacent alcohol proton. For the lower R_{F} compound, obtained in a yield of 13% and assigned structure 15 , the corresponding methine protons appeared at $\delta 5.33(\mathrm{q}, J 6.5 \mathrm{~Hz})$, $4.24(\mathrm{dq}, J 1.5$ and 6.5 Hz) and 4.21 (dd, $J 1.5$ and 8 Hz), respectively. The latter coupling was to the OH proton at $\delta 1.92$ (d, $J 8 \mathrm{~Hz}$).

In order to establish that each product was a naphthopyran rather than a naphthofuran of the general structure 18 , the alcohol function of each isomer was acetylated, which resulted in the marked deshielding, by about 1.6 ppm in each case, of the $4-H$ signals at $\delta 4.16$ and 4.21 in the compounds 13 and 15 , respectively. Similar treatment of the isomeric naphthofurans 18 would have led to deshielding of the doublet of quartets (at $\delta 3.84$ and 4.24).

The fact that the coupling constants between $3-\mathrm{H}$ and $4-\mathrm{H}$ were small $(1-1.5 \mathrm{~Hz})$ in each case confirmed that, with the $3-$ methyl equatorial, the hydroxy (or acetoxy) group was pseudoaxial. ${ }^{1,20}$ With the relative stereochemistry established at C-3 and C-4, it only remained to determine the configurations at $\mathrm{C}-1$ and also whether the products were linear or angular naphthopyrans.

18

$19 R^{1}=H, R^{2}=M e$
$20 R^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Pr}^{\mathrm{j}}$

Two factors supported the major product of higher R_{F}, possessing the pseudoequatorial 1 -methyl substituent as for structure 13, and the minor product, of lower R_{F}, the pseudoaxial 1-methyl as for 15 . The first was the values for the chemical shifts of 3-H for each isomer, at $\delta 3.84$ for 13 and $\delta 4.24$ for 15 . It is known that for benzopyrans and linear naphthopyrans, 3-H appears in the range $\delta 3.5-3.9$ for cis 1,3-dimethyl isomers, while for the trans analogues, 3-H resonates in the range δ 3.94.3. ${ }^{21,22}$ However, there were, hitherto, too few examples involving a 4-hydroxy substituent in both series to be able to generalise, and the possibility that either or both naphthopyrans were angular led to further uncertainties.

The second factor was that a nuclear Overhauser difference spectrum run on the minor isomer after exchange with deuterium oxide showed enhancement for the pseudoaxial proton 3-H on irradiation of 1-methyl at $\delta 1.62$.

This same experiment also suggested the proximity of the aromatic protons $8-\mathrm{H}$ and $10-\mathrm{H}$ to the $1-$ methyl. This observation supported the assignment of the angular naphthopyran 15 to the minor product. The assignment of angular structures to both isomers was further indicated by the positions of the resonances for $5-\mathrm{H}$ in each product; that for 13 at $\delta 6.74$ and that for 15 at $\delta 6.78$. The corresponding resonances for the related linear naphthopyrans 19 and 20 were observed at much lower field, viz. at $\delta 7.84$ and 7.61 , respectively, ${ }^{2}$ although the analogy was not entirely secure in view of the difference in stereochemistry at the adjacent ring atom, C-4.

The assignments of structures 13 and 15 to the major (higher R_{F}) and minor (lower R_{F}) products were confirmed through X-ray crystallographic analysis on the crystalline acetate 14 of the oily 13 and on the minor alcohol 15 itself. ${ }^{23}$

Sufficient material remained to attempt a small-scale deisopropylation of compound 13, using an excess of boron trichloride. In addition to starting material, three products were
identified. The major product (30%) was the derived phenol 21. However, chlorination of the starting alcohol 13 gave rise to its C-4 pseudoaxial chloro derivative $22(15 \%)$ and the corresponding chlorinated phenol 23 (15%).

$21 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
$22 R^{1}=P r^{i}, R^{2}=C l$
$23 R^{1}=H, R^{2}=C l$

$24 R^{1}=H, R^{2}=B r, R^{3}=\mathrm{CH}_{2} \mathrm{OAC}$ $25 \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OAC}$ $26 R^{1}=H, R^{2}=B r, R^{3}=\mathrm{CH}_{2} \mathrm{OH}$ $27 \mathrm{R}^{1}=\mathrm{Br}, \mathrm{A}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OH}$
$28 R^{1}=H, R^{2}=B r, R^{3}=\mathrm{CHO}$
$29 \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CHO}$

$31 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Br}$
$32 \mathrm{R}^{1}=\mathrm{Br}, \mathrm{A}^{2}=\mathrm{H}$

This first experiment, therefore, indicated that it was possible to isomerise naphthyldioxolanes into naphthopyrans. A second isomerisation was then attempted with a cis 4,5-disubstituted dioxolane related to compound 2 , to provide the correct relative stereochemistry at C-3 and C-4 required for Glucoside B 1. A bromine atom would be attached at either of the unsubstituted x-positions of compound 2 to discourage formation of the angular naphthopyran through steric crowding. The syntheses of both the 1 - and 8 -monobromo derivatives of compound 2 were investigated simultaneously.

The 1-bromonaphthyl acetate 24 was hydrolysed to the corresponding alcohol 26, which was, in turn, oxidised as before to the related aldehyde 28 . Wittig reaction of this compound 28 with ethylidenephosphorane afforded a roughly $1: 1$ mixture of the Z-olefin 31 and E-olefin 33.

Alternatively, Warren's method ${ }^{24}$ for obtaining Z-olefins using the Horner-Wittig reaction was investigated. Ethyldiphenylphosphine oxide was thus treated with the 1-bromonaphthaldehyde 28 according to the conditions stipulated for erythro selectivity. The erythro adduct 30 was obtained in a 42% yield after repeated recrystallisation in order to separate the threo adduct formed simultaneously. Elimination of diphenylphosphinate under optimised conditions provided the Z-olefin 31 in a yield of 82% from the erythro adduct $\mathbf{3 0}$. Small quantities ($<10 \%$) of the E-olefin 33 were also obtained.

The modest yield for the formation of the pure erythro adduct 30 and other considerations militated against further investigations on the 1-bromonaphthalene series, and in favour of the isomeric 8-bromo analogues.

Thus, the 8 -bromonaphthyl acetate 25 was converted via the alcohol 27 into the corresponding aldehyde 29. In contrast to the reaction of the 1-bromonaphthaldehyde 28 with ethylidenetriphenylphosphorane, which gave a $1: 1$ ratio of Z - and E olefins 31 and 33 , similar reaction with the 8 -bromonaphthaldehyde 29 afforded largely the (Z)-olefin 32 , contaminated by only 8% of the minor (E)-isomer 34 . These assignments were based on the respective olefinic coupling constants of 13 and
15.6 Hz . Since the former value was at the upper limit for Z olefins, confirmation was sought through reaction with bis(acetonitrile)dichloropalladium(II). ${ }^{19}$ Such a reaction for 2 h did convert the major into the minor product of the Wittig reaction, thereby confirming the assignment. However, longer reaction times converted the product 34 into the E-1-bromo olefin 33, bromine migration having occurred. ${ }^{25}$ The same result was obtained if the oily Z-olefin 32 was left in sunlight for 4 days, isomerisation to the E-olefin 34 preceding radical migration of bromine from $\mathrm{C}-8$ to $\mathrm{C}-1$ to afford 33 . Furthermore, chromatography of the Z-olefin 32 for purification returned the olefin enriched in the E-isomer 34.

The crude Z-olefin 32 was, therefore, converted, without any purification, into the corresponding diol 35 in an overall yield of 59% from the aldehyde 29 . This diol was, in turn, converted into the dioxolane 36 as a single diastereoisomer, using acetaldehyde dimethyl acetal in the presence of toluene-psulfonic acid. A nuclear Overhauser effect difference spectrum, obtained by irradiation of the $5-\mathrm{H}$ heterocyclic ring proton, showed the proximity of both $2-\mathrm{H}$ and $4-\mathrm{H}$, thereby supporting the formulation of the product stereochemistry as cis, syn. Similar irradiation of $2-\mathrm{H}$ and $4-\mathrm{H}$ supported this assignment. This isomer is, no doubt, favoured as the one with least nonbonded interactions, in the conformation 37.

$33 R^{1}=H, R^{2}=B r$ $34 \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{H}$

$38 R^{1}=R^{2}=H$
$39 R^{1}=B r, R^{2}=H$
$40 R^{1}=H, R^{2}=A C$
$41 \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Ac}$

The naphthyldioxolane 36 was treated with 10 molar equiv. of titanium tetrachloride in methylene dichloride at $-78^{\circ} \mathrm{C}$. Aside from minor quantities of the starting dioxolane $36(12 \%)$, the diol $35(14 \%)$ and the alcohol $27(4 \%)$, two new compounds were identified. These were the debrominated angular naphthopyran 38 and its 5-bromo derivative 39 , isolated in 45 and 18%, respectively (calculated on starting dioxolane consumed).

The mass spectrum of the major product showed a molecular ion at $m / z 346$, indicating loss of bromine; the minor product gave rise to a molecular ion pair at $m / z 426$ and 424 in a ratio of approximately $1: 1$, indicating that it was an isomer of the starting dioxolane 36.

The aromatic regions of the ${ }^{1} \mathrm{H}$ NMR spectra of each were instructive. The major product 38 showed a 2 H singlet at $\delta 6.50$ and a 1 H singlet at $\delta 6.97$. The minor product 39 showed a pair of 1 H meta-coupled doublets at $\delta 6.55$ and 6.60 , indicating the migration of bromine to the alternate aromatic ring.

In addition to signals due to an isopropoxy and two methoxy groups as well as two methyl doublets, each spectrum showed
three 1-H signals due to the three methine protons on each heterocyclic ring. For the major product, 38, these were a quartet $(J 6.5 \mathrm{~Hz})$ at $\delta 5.32$ due to $1-\mathrm{H}$, a doublet of quartets (J 8.3 and 6.3 Hz) at $\delta 3.89$ due to $3-\mathrm{H}$, a triplet $(J 8.3 \mathrm{~Hz})$ at $\delta 4.38$ due to $4-\mathrm{H}$ and a doublet $(J 8.3 \mathrm{~Hz})$ at $\delta 1.89$ for the hydroxy group. Deuterium oxide exchange collapsed 4-H to a doublet (J 8.3 Hz) and removed the alcohol signal. Related signals were observed for the minor product 39 .

That each compound was a naphthopyran rather than a naphthofuran was confirmed by the conversion of each into its acetate, to form 40 and 41 , whereupon the $4-\mathrm{H}$ signal of each was deshielded by well over 1 ppm .

The ${ }^{1} \mathrm{H}$ NMR spectra of the minor product 39 and its acetate 41 showed the doubling of some of the signals, which was ascribed to the existence of two conformations of the pyran ring as a consequence of considerable crowding of the substituents attached to all adjacent atoms from C-3 to C-7 of the ring system. This effect was more pronounced for the acetate. This notwithstanding, the product 39 was shown to be a single compound since it was smoothly converted in high yield (81%) into the debrominated angular pyran 38 on reaction with an excess of butyllithium, a process in which the intermediate lithio derivative of metal-halogen exchange was, no doubt, well stabilized by both the neighbouring alkoxide and isopropoxy substituents.

The large coupling constant ($J 8.3 \mathrm{~Hz}$) between $3-\mathrm{H}$ and $4-\mathrm{H}$ in the naphthopyran 38 was consistent with their being almost trans-diaxial; the 3-methyl was, therefore, equatorial and the 4hydroxy pseudoequatorial.

Nuclear Overhauser effect difference spectroscopy supported the 1 -methyl being pseudoaxial. Thus, its irradiation enhanced the $3-\mathrm{H}$ signal significantly.

The chemical shift of the aromatic $5-\mathrm{H}(\delta \quad 6.97)$ was comparable with those ($\delta 6.74$ and 6.78) for the angular stereoisomers 13 and 15, and quite different from that ($\delta 7.61$) of the known ${ }^{2}$ linear regioisomer 4.

These data led to the assignment of structure 38 to the major product and 39 to the minor brominated derivative. However, since the C-1 stereochemistry of both compounds rested solely on NOE experiments, a method of relating these structures to those of the stereoisomers 13 and 15 , determined through X-ray crystallography, was sought. This was achieved by converting each of the angular naphthopyrans 13 and 15 into their 4 -deoxy derivatives and comparing the products, as follows.

Compound 15 was treated with phosphorus tribromide, whereupon a mixture of the two benzylic bromides 42 and 43 was produced. For the former, 42, the C-4 bromine was pseudoequatorial as the coupling constant between $3-\mathrm{H}$ and 4 H was 8.5 Hz while that for the stereoisomer 43 was 2 Hz . The respective chemical shifts for the neighbouring $5-\mathrm{H}$ aromatic protons were $\delta 6.92$ and 6.65 indicating the closer proximity of bromine to $5-\mathrm{H}$ in the former case.

Treatment of the mixture of these isomers with aqueous
ethanolic Raney nickel catalyst yielded the trans-1,3-dimethylnaphthopyran 44 as a single product.

The naphthopyranol 13 was similarly converted into the pair of bromides 45 and 46, whose individual stereochemistries were once again assigned as above from the $4-\mathrm{H}$ coupling constants and $5-\mathrm{H}$ chemical shifts. These stereoisomers were hydrogenolysed as above with Raney nickel to afford the cis-1,3dimethylnaphthopyran 47, stereoisomeric with the previous product 44.

It is noteworthy that the chemical shift for 3-H in the cis compound 47 was $\delta 3.74$ and for the trans isomer 44 was $\delta 4.25$. These values are entirely consistent with the ranges δ 3.5-3.9 and 3.9-4.3 for cis and trans compounds reported previously ${ }^{21,22}$ (and earlier, tentatively, in this paper for compounds 13 and 15).

The naphthopyran 38 was then treated with phosphorus tribromide to afford the pair of isomeric bromides 42 and 43 identical with those previously obtained from the epimeric alcohol 15. Hydrogenolysis of this mixture of bromides once again afforded the trans-1,3-dimethyl compound 44. As a consequence, the stereochemistries of the pyrans 38 and 39 were confirmed.

Conclusions.-The major objective of the work described in this paper was achieved in that it was shown first that appropriately substituted naphthyldioxolanes may be stereoselectively isomerised to angular naphthopyrans related to Glucoside B 1, although conversion into the desired linear naphthopyrans has not yet been achieved. The formation of the angular analogues may arise through steric crowding leading to ring closure of intermediate oxonium ions such as $\mathbf{3}$ para rather than ortho to the sterically demanding isopropoxy substituent. Such observed ring closure may also be favoured as a consequence of the well known preference for electrophilic substitution of naphthalenes at the α-rather than the β-position.
Secondly, it was shown that the stereochemistry at C-3 and $\mathrm{C}-4$ in the product could be controlled by choice of stereochemistry at the vicinal centres C-4 and C-5 in the starting dioxolane. The factors determining the control of stereochemistry at C-1 have not yet been established and may be regulated by either steric or other factors, such as the nature of the transition state. ${ }^{15}$
Other problems that remain to be solved include construction of linear rather than angular naphthopyrans, perhaps by replacing isopropoxy by methoxy or hydroxy groups, and/or blocking the α-position to discourage formation of the angular ring system. Furthermore, there had been insufficient material available in this study to optimise the yields of the products by varying conditions such as temperature and the proportion of titanium tetrachloride required. Such experiments would best be performed on benzenoid models, which would be less difficult to synthesize. The design and synthesis of suitable substrates is currently under active investigation to provide answers to these questions.

Finally, it is assumed that the desired naphthopyrans were formed to the exclusion of isomeric naphthofurans such as 18, since formation of the former occurs via the 6 -endo-trig ringclosure of oxonium ions such as $\mathbf{3}$ rather than through the less favoured 5 -endo-trig ring-closures that would lead to the isomeric naphthofurans. ${ }^{26,27}$

Experimental

General Details.-See preceding paper in this issue.
4-Isopropoxy-5,7-dimethoxynaphthalene-2-carbaldehyde 8.A solution of the alcohol $7^{25}(463 \mathrm{mg}, 1.69 \mathrm{mmol})$ in benzene ($25 \mathrm{~cm}^{3}$) was boiled with activated manganese dioxide $(2 \mathrm{~g}, 23$
$\mathrm{mmol})$ for 5 h . The reaction mixture was then cooled, filtered and the filtrate evaporated. The residue obtained upon work-up was chromatographed (eluent 10% ethyl acetate-light petroleum) to afford the product ($335 \mathrm{mg}, 73 \%$), m.p. $73-75^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum) (Found: C, 70.2; H, 6.5. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, $70.1 ; \mathrm{H}, 6.6 \%)$; $v_{\max } / \mathrm{cm}^{-1} 1690(\mathrm{C}=\mathrm{O}) ; \delta(90 \mathrm{MHz})$ $1.41\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.67[1 \mathrm{H}$, sept., $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.58$ and 6.80 (each $1 \mathrm{H}, \mathrm{d}, J 2,6-$ and $8-\mathrm{H}), 7.12$ and 7.65 (each $1 \mathrm{H}, J 1.5,3-$ and $1-\mathrm{H})$ and 9.97 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$); m/z $274\left(\mathrm{M}^{+}, 32 \%\right.$), 232 (100) and 189 (32).
rel-(1S,2S)-1-(4-Isopropoxy-5,7-dimethoxynaphthalen-2-yl)-propane-1,2-diol 11.-To a solution of the alkene $10^{19}(194 \mathrm{mg}$, 0.68 mmol) in pyridine was added a solution of osmium tetroxide ($200 \mathrm{mg}, 0.79 \mathrm{mmol}$) in ether ($2 \mathrm{~cm}^{3}$). After the mixture had been stirred at room temperature for 45 min , thin layer chromatography (TLC) showed the presence of some starting material and so more osmium tetroxide ($100 \mathrm{mg}, 0.39$ mmol) was added to it; the mixture was then stirred for a further 15 min . A solution of water ($5 \mathrm{~cm}^{3}$) pyridine ($5 \mathrm{~cm}^{3}$) and sodium metabisulphite (700 mg) was added to the stirred reaction mixture which, after 30 min , was acidified (dilute hydrochloric acid) and extracted with methylene dichloride. The residue obtained upon work-up was chromatographed (eluent 30% ethyl acetate-light petroleum increasing to neat ethyl acetate) to afford the product ($191 \mathrm{mg}, 88 \%$) as colourless needles, m.p. 91$92{ }^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum) (Found: C, 67.5; H, 7.35. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 67.5 ; \mathrm{H}, 7.5 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3315(\mathrm{OH})$ and 1627 and $1608(\mathrm{C}=\mathrm{C}) ; \delta(90 \mathrm{MHz}) 1.00\left(3 \mathrm{H}, \mathrm{d}, J 7,1^{\prime}-\mathrm{CH}_{3}\right), 1.33$ [$6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $3.36(2 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{OH}), 3.80$ and 3.84 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, J 7,1^{\prime}-\mathrm{H}\right)$, 4.47 [1 H , sept., $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.39$ and 6.54 (each $1 \mathrm{H}, \mathrm{d}, J 2$, $6-$ and $8-\mathrm{H}$) and 6.64 and 7.08 (each $1 \mathrm{H}, \mathrm{d}, J 1.5,3-$ and $1-\mathrm{H}$); $m / z 320\left(\mathrm{M}^{+}, 66 \%\right), 274$ (32), 232 (100), 205 (79), 189 (32), 174 (11), 149 (15), 57 (15) and 43 (29).
rel-(2R or 2S,4S,5S)-4-(4-Isopropoxy-5,7-dimethoxynaphth-alen-3-yl)-2,5-dimethyldioxolane 12.-A solution of the diol $11(94 \mathrm{mg}, 0.29 \mathrm{mmol})$, acetaldehyde ($38 \mathrm{mg}, 0.86 \mathrm{mmol}$) and toluene- p-sulfonic acid ($37 \mathrm{mg}, 0.21 \mathrm{mmol}$) in benzene ($20 \mathrm{~cm}^{3}$) was heated under reflux in a Dean-Stark apparatus for 30 min . The cooled solution was washed with aqueous sodium hydrogen carbonate and then water. The residue obtained upon work-up was chromatographed (eluent 5% ethyl acetate-light petroleum) to afford the oily product ($77 \mathrm{mg}, 76 \%$) (Found: C, $69.5 ; \mathrm{H}, 7.5 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 69.4 ; \mathrm{H}, 7.6 \%\right) ; \delta(90 \mathrm{MHz})$ $1.38\left[6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.41\left(3 \mathrm{H}, \mathrm{d}, J 7,5^{\prime}-\mathrm{CH}_{3}\right), 1.50(3$ $\mathrm{H}, \mathrm{d}, J 5,2^{\prime}-\mathrm{CH}_{3}$), 3.88 and 3.90 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.86-3.90$ $\left(1 \mathrm{H}, \mathrm{dq}, J 7\right.$ and $\left.9,5^{\prime}-\mathrm{H}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 9,4^{\prime}-\mathrm{H}\right), 4.56[1 \mathrm{H}$, sept., $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.50\left(1 \mathrm{H}, \mathrm{q}, J 5,2^{\prime}-\mathrm{H}\right), 6.49$ and 6.72 (each $1 \mathrm{H}, \mathrm{d}, J 2,6-$ and $8-\mathrm{H}$) and 6.76 and 7.28 (each $1 \mathrm{H}, \mathrm{d}, J$ 1.5, 1 - and $3-\mathrm{H}$); $m / z 346\left(\mathrm{M}^{+}, 72 \%\right.$), 260 (32), 245 (100), 244 (93), 72 (23) and 43 (53).
rel-(1R,3S,4S)-3,4-Dihydro-4-hydroxy-6-isopropoxy-7,9-di-methoxy-1,3-dimethylnaphtho [1,2-c]pyran 13 and rel-(1S,3S, 4S)-3,4-Dihydro-4-hydroxy-6-isopropoxy-7,9-dimethoxy-1,3-dimethylnaphtho[$1,2-\mathrm{c}]$ pyran 15.-To a solution of the dioxolane $12(97 \mathrm{mg}, 0.28 \mathrm{mmol})$ in methylene dichloride ($2 \mathrm{~cm}^{3}$) was added titanium tetraisopropoxide $\left(0.17 \mathrm{~cm}^{3}, 162 \mathrm{mg}, 0.57\right.$ mmol) at $--78^{\circ} \mathrm{C}$ under nitrogen. The solution was stirred for 5 min after which titanium tetrachloride $\left(0.06 \mathrm{~cm}^{3}, 103 \mathrm{mg}, 0.55\right.$ mmol) was added to it. The dark reaction mixture was stirred for 15 min at room temperature then quenched with saturated aqueous sodium hydrogen carbonate. The residue obtained upon work-up was purified by preparative thin layer (PLC) chromatography (eluent 30% ethyl acetate-light petroleum) to
afford the oily product 13 ($31 \mathrm{mg}, 32 \%$, or 39% based on unrecovered starting material) with $R_{\mathrm{F}} 0.49$ in the solvent system quoted (Found: C, $69.5 ; \mathrm{H}, 7.6 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$ requires C , $69.3 ; \mathrm{H}, 7.6 \%) ; \delta(90 \mathrm{MHz}) 1.39\left[9 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and 3$\left.\mathrm{CH}_{3}\right], 1.64\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,1-\mathrm{CH}_{3}\right), 1.92(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{OH}), 3.84(1 \mathrm{H}$, $\mathrm{dq}, J 1$ and $7,3-\mathrm{H}$), 3.87 and 3.88 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.16 (1 H, d br, $J 1,4-\mathrm{H}), 4.57\left[1 \mathrm{H}\right.$, sept., $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.38(1 \mathrm{H}, \mathrm{q}$, $J 7,1-\mathrm{H}), 6.49$ and $6.59($ each $1 \mathrm{H}, \mathrm{d}, J 2,8$ - and $10-\mathrm{H})$ and 6.74 ($1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}$); $m / z 346$ ($\mathrm{M}^{+}, 58 \%$), 331 (32), 289 (100), 259 (19) and 245 (15). This was followed ($R_{\mathrm{F}} 0.41$) by the product 15 (10 $\mathrm{mg}, 10 \%$, or 13% based on unrecovered starting material) m.p. $136-137{ }^{\circ} \mathrm{C}$ (light petroleum) (Found: $\mathrm{M}^{+}, 346.177195$. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $M, 346.177994$); $\delta 1.39[6 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.42\left(3 \mathrm{H}, \mathrm{d}, J 6.5,3-\mathrm{CH}_{3}\right), 1.62(3 \mathrm{H}, \mathrm{d}, J 6.5,1-$ CH_{3}), $1.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, \mathrm{OH}), 3.89$ and 3.91 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.21(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $8,4-\mathrm{H})$, $4.24(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and 6.5 , 3H), $4.57\left[1 \mathrm{H}\right.$, sept., $\left.J 6, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right], 5.33(1 \mathrm{H}, \mathrm{q}, J 6.5,1-\mathrm{H})$, 6.48 and 6.51 (each $1 \mathrm{H}, \mathrm{d}, J 2,8$ - and $10-\mathrm{H}$) and $6.78(1 \mathrm{H}, \mathrm{s}, 5-$ H); $m / z 346\left(\mathrm{M}^{+}, 63 \%\right.$), 331 (32), 301 (25), 289 (100), 259 (43) and 245 (15).
rel-(1R,3S,4S)-4-Acetoxy-3,4-dihydro-6-isopropoxy-7,9-di-methoxy-1,3-dimethylnaphtho[1,2-c] pyran 14.-A solution of the naphthopyran $13(11 \mathrm{mg}, 0.03 \mathrm{mmol})$ in acetic anhydride (2 cm^{3}) and pyridine ($0.5 \mathrm{~cm}^{3}$) was stirred at $55^{\circ} \mathrm{C}$ for 1 h after which it was diluted with methylene dichloride and washed successively with saturated aqueous sodium hydrogen carbonate, dilute hydrochloric acid and water. The residue obtained upon work-up was chromatographed (PLC, eluent 15% ethyl acetate-light petroleum) to afford the product 14 ($12 \mathrm{mg}, 97 \%$), m.p. $134-136^{\circ} \mathrm{C}$ (light petroleum) (Found: $\mathrm{M}^{+}, 388.189686$. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $M, 388.188556$); $\delta 1.31$ ($3 \mathrm{H}, \mathrm{d}, J 6.5,3-$ $\left.\mathrm{CH}_{3}\right), 1.39\left[6 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.65\left(3 \mathrm{H}, \mathrm{d}, J 6,1-\mathrm{CH}_{3}\right)$, $2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $6.5,3-\mathrm{H}), 4.55\left[1 \mathrm{H}\right.$, sept., $\left.J 6, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right], 5.45(1 \mathrm{H}, \mathrm{q}, J$ $6,1-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H}), 6.53$ and 6.63 (each $1 \mathrm{H}, \mathrm{d}, J 2$, 8 -and $10-\mathrm{H})$ and $6.78(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; m / z 388\left(\mathrm{M}^{+}, 23 \%\right), 271$ (84), 259 (17), 149 (17), 71 (17), 43 (100) and 41 (37).

Reaction of Compound 13 with Boron Trichloride.-Compound $13(29 \mathrm{mg}, 0.084 \mathrm{mmol})$ in methylene dichloride $\left(2 \mathrm{~cm}^{3}\right)$ was treated with boron trichloride ($21 \mathrm{mg}, 0.18 \mathrm{mmol}$) in methylene dichloride $\left(0.1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and then stirred for 30 min . The temperature of the reaction mixture was raised to $-10^{\circ} \mathrm{C}$ after which it was stirred for a further 30 min . The reaction was quenched by addition of water to the mixture and the products were extracted with methylene dichloride. The residue obtained upon work-up afforded, in order of decreasing R_{F}, first, compound $22[3 \mathrm{mg}, 10 \%(15 \% \dagger)] \delta(90 \mathrm{MHz}) 1.40[6$ $\left.\mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.44\left(3 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{CH}_{3}\right), 1.61(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.1-\mathrm{CH}_{3}\right), 3.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $7,3-\mathrm{H})$, $4.56\left[1 \mathrm{H}\right.$, sept., $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.76(1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H}), 5.48$ ($1 \mathrm{H}, \mathrm{q}, J 7,1-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{d}, J 2,8-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2,10-\mathrm{H})$ and $6.66(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; m / z 366\left(\mathrm{M}^{+}, 15\right), 364\left(\mathrm{M}^{+}, 41\right), 351(7)$, 349 (19), 309 (34) and 307 (100). This was followed by compound 23 [$3 \mathrm{mg}, 10 \%(15 \% \dagger)] ; \delta(90 \mathrm{MHz}) 1.44(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.3-\mathrm{CH}_{3}\right), 1.65\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,1-\mathrm{CH}_{3}\right), 3.87$ and 4.20 (each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.92(1 \mathrm{H}, \mathrm{dq}, J 1.5$ and $7,3-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H})$, $5.44(1 \mathrm{H}, \mathrm{q}, J 7,1-\mathrm{H}), 6.51$ and 6.60 (each $1 \mathrm{H}, \mathrm{d}, J 2,8$ - and $10-$ $\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; m / z 324\left(\mathrm{M}^{+}, 11 \%\right)$, $322\left(\mathrm{M}^{+}, 30\right), 309(35), 307$ (100), 273 (9) and 271 (28). Unchanged starting material 12 was recovered ($10 \mathrm{mg}, 35 \%$). Finally compound 21 was isolated [$5 \mathrm{mg}, 20 \%(30 \% \dagger)] \delta(90$ $\mathrm{MHz}) 1.39\left(3 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{d}, J 7,1-\mathrm{CH}_{3}\right), 3.78$ $(1 \mathrm{H}, \mathrm{dq}, 1.5$ and $7,3-\mathrm{H}), 3.88$ and $4.02\left(\operatorname{each} 3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08$

[^1]$(1 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{q}, J 7,1-\mathrm{H}), 6.49$ and 6.61 (each 1 $\mathrm{H}, \mathrm{d}, J 2,8-\mathrm{and} 10-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $9.18(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, disappears with $\mathrm{D}_{2} \mathrm{O}$ wash); $m / z 304\left(\mathrm{M}^{+}, 37 \%\right), 289$ (100), 271 (25), 245 (19) and 243 (9).

Reaction of Compound $\mathbf{1 0}$ with meta-Chloroperbenzoic Acid.-The olefin $10(68 \mathrm{mg}, 0.24 \mathrm{mmol})$ was dissolved in methylene dichloride ($20 \mathrm{~cm}^{3}$) and saturated aqueous sodium hydrogen carbonate $\left(1 \mathrm{~cm}^{3}\right)$ added to the solution. This was followed by m-chloroperbenzoic acid ($144 \mathrm{mg}, 0.96 \mathrm{mmol}$) added to this solution over 20 min . The mixture was stirred vigorously at room temperature during which it became dark red. After 24 h , TLC of the reaction mixture indicated formation of a number of products. The mixture was diluted with water and extracted with methylene dichloride. The residue obtained upon work-up was chromatographed (eluent 20% ethyl acetate-light petroleum) to provide two major products. The product of higher R_{F} was the quinone $17(7 \mathrm{mg}, 10 \%) ; \delta_{\mathrm{H}}$ $1.42\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,3^{\prime}-\mathrm{CH}_{3}\right), 3.84$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.65\left[1 \mathrm{H}\right.$, sept., $\left.J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.03(1 \mathrm{H}, \mathrm{s}$, 3-H), 6.35-6.59 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}$ - and $2^{\prime}-\mathrm{H}$) and 7.18 and 7.71 (each 1 H, d, J 2, 6- and 8-H); $m / z 286\left(\mathrm{M}^{+}, 95 \%\right.$), 271 (100) and 244 (80). The product of lower R_{F} was the quinone $\mathbf{1 6}(9 \mathrm{mg}, 13 \%) ; \delta$ $1.37\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.92\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,3^{\prime}-\mathrm{CH}_{3}\right), 3.91(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.59\left[1 \mathrm{H}\right.$, sept., $\left.J 6.1, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right], 5.90(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}), 6.30-6.50\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\right.$ and $\left.2^{\prime}-\mathrm{H}\right)$ and 7.14 and 7.82 (each 1 $\mathrm{H}, \mathrm{d}, J 2,6-\mathrm{and} 8-\mathrm{H}) ; m / z 286\left(\mathrm{M}^{+}, 95 \%\right), 271$ (100) and 244 (79).

1-Bromo-2-hydroxymethyl-4-isopropoxy-5,7-dimethoxynaphthalene 26.-The acetate $24(200 \mathrm{mg}, 0.50 \mathrm{mmol})$ was dissolved in $1 \%(\mathrm{w} / \mathrm{v})$ methanolic potassium hydroxide (42 mg , 0.75 mmol) and the mixture stirred for 10 min at room temperature. Dilute hydrochloric acid was added to the mixture to quench the reaction and the organic material was extracted into ether and the extract washed with water. The residue obtained upon work-up was chromatographed (eluent 10% ethyl acetate-light petroleum) to afford product 26 (142 mg , 80%) as white feather-like needles, m.p. $106-107^{\circ} \mathrm{C}$ (light petroleum) (Found: C, 53.9; H, 5.35. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{4}$ requires C, $54.1 ; \mathrm{H}, 5.35 \%$); $v_{\max } / \mathrm{cm}^{-1} 3389(\mathrm{OH})$ and 1619 and $1599(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 1.39\left[6 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.18\left(1 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 3.91 and 3.94 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.57 [1 H , sept., $\left.J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.88\left(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{2}\right), 6.51(1 \mathrm{H}, \mathrm{d}, J$ $2.4,6-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{d}, J 2.4,8-\mathrm{H})$ and $7.26(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}$ $22.06\left(2 \times \mathrm{CH}_{3}\right), 55.22$ and $56.11\left(2 \times \mathrm{OCH}_{3}\right), 65.72\left(\mathrm{CH}_{2}\right)$, $73.25(\mathrm{CH}), 98.20(\mathrm{C}-6)^{2}, 99.14(\mathrm{C}-3)^{\mathrm{a}}, 110.31(\mathrm{C}-8)^{\mathrm{a}}, 112.42(\mathrm{C}-$ $4 \mathrm{a})^{\mathrm{b}}, 115.29(\mathrm{C}-8 \mathrm{a})^{\mathrm{b}}, 135.99(\mathrm{C}-1), 139.05(\mathrm{C}-2), 154.80(\mathrm{C}-4)^{\mathrm{c}}$, $158.31(\mathrm{C}-5)^{\mathrm{c}}$ and $158.88(\mathrm{C}-7)^{\text {c }}$; $m / z 356\left(\mathrm{M}^{+}, 35 \%\right), 354\left(\mathrm{M}^{+}\right.$, 35%), 314 (100), 312 (100), 271 (12) and 269 (12). (Assignments with identical superscripts are interchangeable.)

1-Bromo-4-isopropoxy-5,7-dimethoxynaphthalene-2-carb-

 aldehyde 28.-A solution of the alcohol $26(125 \mathrm{mg}, 0.35 \mathrm{mmol})$ in benzene ($10 \mathrm{~cm}^{3}$) was boiled with activated manganese dioxide ${ }^{18}(1 \mathrm{~g})$ for 1 h . The reaction mixture was cooled, filtered and concentrated. The residue was purified by chromatography (eluent 10% ethyl acetate-light petroleum) to afford the aldehyde $28(100 \mathrm{mg}, 81 \%)$ as yellow needles, m.p. $111-112^{\circ} \mathrm{C}$ (light petroleum) (Found: C, 54.5; $\mathrm{H}, 4.85 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 4.8 \%) ; v_{\max } / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and 1617 and $1593(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.42\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right] 3.92$ and 3.98 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.70\left[1 \mathrm{H}\right.$, sept., $\left.J 6.1, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right]$, $6.68(1 \mathrm{H}, \mathrm{d}, J 2.3,6-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{d}, J 2.3,8-$ $\mathrm{H})$ and $10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; $\delta_{\mathrm{C}} 21.95\left(2 \times \mathrm{CH}_{3}\right), 55.37$ and $56.41\left(2 \times \mathrm{OCH}_{3}\right), 72.24(\mathrm{CH}), 99.22(\mathrm{C}-6), 102.29(\mathrm{C}-3)^{a}$, $105.37(\mathrm{C}-8)^{\text {a }}, 118.41(\mathrm{C}-4 \mathrm{a})^{\mathrm{b}}, 120.42(\mathrm{C}-8 \mathrm{a})^{\mathrm{b}}, 131.98(\mathrm{C}-2)$, $136.32(\mathrm{C}-1), 155.49(\mathrm{C}-4)^{\mathrm{c}}, 158.49(\mathrm{C}-5)^{\mathrm{c}}, 159.82(\mathrm{C}-7)^{\mathrm{c}}$ and193.07 (CHO); $m / z 354$ ($\mathrm{M}^{+}, 34 \%$), 352 ($\mathrm{M}^{+}, 34 \%$), 312 (100), 310 (100), 269 (24) and 267 (24).
(Z)- and (E)-1-(1-Bromo-4-isopropoxy-5,7-dimethoxynaph-thalen-2-yl)prop-1-ene 31 and 33.-To a stirred suspension of ethyltriphenylphosphonium bromide ($400 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dry tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$, was added butyllithium ($1.10 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv.). The orange solution was stirred at $0^{\circ} \mathrm{C}$ for 5 min , and then cooled to $-78^{\circ} \mathrm{C}$. The aldehyde $28(300 \mathrm{mg}, 0.85 \mathrm{mmol})$ dissolved in dry tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ was then slowly dripped into the solution so that its temperature did not rise above $-78^{\circ} \mathrm{C}$. The mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 15 min after which it was allowed to warm to room temperature over 1 h . The reaction was quenched by the addition of water to the mixture after which it was diluted with ether. The organic layer was separated and washed several times with brine. The residue obtained upon work-up was chromatographed on alumina (eluent 15% ethyl acetate-light petroleum) to afford a mixture $(\sim 1: 1)$ of the olefins 31 and $33(248 \mathrm{mg}, 80 \%)$ as a yellow oil; $\delta_{\mathrm{H}} 1.34$ and 1.36 [each $6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of each isomer], $1.80(3 \mathrm{H}, \mathrm{dd}, J$ 7 and $1.5,3^{\prime}-\mathrm{CH}_{3}$ of isomer 31), $1.97\left(3 \mathrm{H}, \mathrm{dd}, J 6.5\right.$ and $1.7,3^{\prime}-$ CH_{3} of isomer 33), $3.90,3.91,3.95$ and 3.99 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$ of each isomer), 4.50 and 4.54 [each 1 H , sept., $J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ of each isomer], $5.91\left(1 \mathrm{H}, \mathrm{dq}, J 11.5\right.$ and $7,2^{\prime}-\mathrm{H}$ of isomer 31$)$, $6.24\left(1 \mathrm{H}, \mathrm{dq}, J 15.5\right.$ and $6.5,2^{\prime}-\mathrm{H}$ of isomer 33$), 6.51(1 \mathrm{H}, \mathrm{d}, J$ $1.5,6-\mathrm{H}$ of isomer 31), $6.54(1 \mathrm{H}, \mathrm{d}, J 1.5,6-\mathrm{H}$ of isomer 33), 6.65 ($1 \mathrm{H}, \mathrm{dq}, J 11.5$ and $1.5,1^{\prime}-\mathrm{H}$ of isomer 31), $6.72(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$ of isomer 31), $6.94(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$ of isomer 33$), 6.98(1 \mathrm{H}, \mathrm{dq}, J 15.5$ and $1.7,1^{\prime}-\mathrm{H}$ of isomer 33$), 7.29(1 \mathrm{H}, \mathrm{d}, J 1.5,8-\mathrm{H}$ of isomer 31$)$ and $7.34(1 \mathrm{H}, \mathrm{d}, J 1.5,8-\mathrm{H}$ of isomer 33$)$.
rel-(1R,2S)-1-(1-Bromo-4-isopropoxy-5,7-dimethoxynaph-thalen-2-yl)-2-diphenylphosphinoylpropan-1-ol 30.-To ethyldiphenylphosphine oxide ($131 \mathrm{mg}, 0.57 \mathrm{mmol}$) in dry tetrahydrofuran $\left(4 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen, was added butyllithium ($0.57 \mathrm{mmol}, 1 \mathrm{~mol}$ equiv.). The dark orange solution was immediately cooled to $-78^{\circ} \mathrm{C}$ and the aldehyde $28(200 \mathrm{mg}, 0.57 \mathrm{mmol})$ in dry tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ added dropwise at such a rate that the temperature of the solution did not rise above $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature over 1 h after which it was diluted with water to quench the reaction. The organic material was extracted into ether and flash chromatography (eluent 70% ethyl acetate-light petroleum) of the residue obtained upon work-up yielded a mixture of erythro and threo adducts ($212 \mathrm{mg}, 63 \%$). Repeated crystallisation (light petroleum) afforded the erythro adduct 30 ($140 \mathrm{mg}, 42 \%$) as white needles, m.p. $204-205^{\circ} \mathrm{C}$ (light petroleum) (Found: $\mathrm{C}, 61.65 ; \mathrm{H}, 5.4 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{BrO}_{5} \mathrm{P}$ requires C , 61.7; H, $5.5 \%) ; v_{\max } / \mathrm{cm}^{-1} 3190(\mathrm{OH})$ and 1615 and $1593(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 1.05\left(3 \mathrm{H}, \mathrm{dd}, J 16.1\right.$ and $\left.7.1,3^{\prime}-\mathrm{CH}_{3}\right), 1.37[6 \mathrm{H}, \mathrm{d}, J 6.1$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.94\left(1 \mathrm{H}\right.$, quint., $\left.J 7.1,2^{\prime}-\mathrm{H}\right), 3.91\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.62\left[1 \mathrm{H}\right.$, sept., $\left.J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.01(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.59(1 \mathrm{H}$, $\left.\mathrm{d}, J 8.3,1^{\prime}-\mathrm{H}\right), 6.51$ and 7.19 (each $1 \mathrm{H}, \mathrm{d}, J 2,6-$ and $8-\mathrm{H}$), 7.22 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$) and $7.50-8.14\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 584\left(\mathrm{M}^{+}\right.$, 8%), $582\left(\mathrm{M}^{+}, 8 \%\right), 503$ (100) and 461 (65).
(Z)-1-(1-Bromo-4-isopropoxy-5,7-dimethoxynaphthalen-2-
yl) prop-1-ene 31.-The erythro adduct $30(29 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in dry dimethylformamide $\left(3 \mathrm{~cm}^{3}\right)$ at $55^{\circ} \mathrm{C}$ under nitrogen and sodium hydride $(0.1 \mathrm{mmol})$ was added in one portion to this solution. After the mixture had been stirred at $55^{\circ} \mathrm{C}$ for 20 min it was diluted with water and the organic material was extracted into ether. The extract was washed with brine and the residue obtained upon work-up was chromatographed on alumina (eluent 15% ethyl acetate-light petroleum) to afford the (Z)-olefin $31(15 \mathrm{mg}, 82 \%$) as an oil (Found: C, $59.3 ; \mathrm{H}, 5.6 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}_{3}$ requires $\mathrm{C}, 59.2 ; \mathrm{H}, 5.75 \%$);
$v_{\max }($ film $) / \mathrm{cm}^{-1} 1615$ and $1590(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.36$ [6 H, d, J 6.1, $\left.\left.\mathrm{CH}(\mathrm{CH})_{3}\right)_{2}\right], 1.80\left(3 \mathrm{H}, \mathrm{dd}, J 7\right.$ and $\left.1.5,3^{\prime}-\mathrm{CH}_{3}\right), 3.90$ and 3.95 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.50$ [sept., J 6.1, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $5.91(1 \mathrm{H}$, dq, $J 11.5$ and $\left.7,2^{\prime}-\mathrm{H}\right), 6.51(1 \mathrm{H}, \mathrm{d}, J 1.5,6-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dq}, J$ 11.5 and $\left.1.5,1^{\prime}-\mathrm{H}\right), 6.72(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $7.29(1 \mathrm{H}, \mathrm{d}, J 1.5$, $8-\mathrm{H}) ; m / z 366\left(\mathrm{M}^{+}, 42 \%\right), 364\left(\mathrm{M}^{+}, 42 \%\right), 324(100), 322(100)$, 285 (20) and 243 (80).

8-Bromo-2-hydroxymethyl-4-isopropoxy-5,7-dimethoxynaphthalene 27.-The acetate $25(500 \mathrm{mg}, 0.50 \mathrm{mmol})$ was dissolved in $1 \%(\mathrm{w} / \mathrm{v})$ methanolic potassium hydroxide $(105 \mathrm{mg}, 1.88$ mmol) and the solution stirred for 10 min at room temperature. The reaction was quenched by the addition of dilute hydrochloric acid to the mixture and the organic material was extracted into ether. The extract was washed with water and the residue obtained upon work-up was chromatographed (eluent 10% acetate-light petroleum) to afford the product $27(399 \mathrm{mg}$, 90%) as white needles, m.p. $97-98^{\circ} \mathrm{C}$ (light petroleum) (Found: C, $54.0 ; \mathrm{H}, 5.15 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 54.1 ; \mathrm{H}, 5.35 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3419(\mathrm{OH})$ and 1622 and $1596(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.38[6 \mathrm{H}, \mathrm{d}$, $\left.J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.23\left(1 \mathrm{H}, \mathrm{t}, J 6.1, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $)$, 3.98 and 4.03 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.55[1 \mathrm{H}$, sept., J 6.1, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $5.77\left(1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}_{2}\right), 6.62(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.82(1$ $\mathrm{H}, \mathrm{d}, J 1.5,3-\mathrm{H})$ and $7.71(1 \mathrm{H}, \mathrm{d}, J 1.5,1-\mathrm{H}) ; \delta_{\mathrm{C}} 22.04\left(2 \times \mathrm{CH}_{3}\right)$, 56.47 and $56.72\left(2 \times \mathrm{OCH}_{3}\right), 65.39\left(\mathrm{CH}_{2}\right), 72.96(\mathrm{CH}), 95.28$ $(\mathrm{C}-6), 99.75(\mathrm{C}-4 \mathrm{a})^{\mathrm{a}}, 109.44(\mathrm{C}-3)^{\mathrm{b}}, 114.80(\mathrm{C}-8 \mathrm{a})^{\mathrm{a}}, 116.81$ $(\mathrm{C}-1)^{\mathrm{b}}, 135.26(\mathrm{C}-8), 140.87(\mathrm{C}-2), 153.88(\mathrm{C}-4)^{\mathrm{c}}, 155.16(\mathrm{C}-5)^{\mathrm{c}}$ and $159.84(\mathrm{C}-7)^{\mathrm{c}} ; m / z 356\left(\mathrm{M}^{+}, 38 \%\right), 354\left(\mathrm{M}^{+}, 38 \%\right), 314$ (100), 312 (100), 299 (16), 297 (16), 271 (19) and 269 (20).

8-Bromo-4-isopropoxy-5,7-dimethoxynaphthalene-2-carbaldehyde 29.-The alcohol $27(150 \mathrm{mg}, 0.42 \mathrm{mmol})$ was dissolved in benzene $\left(10 \mathrm{~cm}^{3}\right)$ and boiled with activated manganese dioxide ${ }^{18}(1 \mathrm{~g})$ for 1 h . The reaction mixture was cooled, filtered and concentrated, and the residue was chromatographed (eluent 10% ethyl acetate-light petroleum) to yield the aldehyde 29 ($127 \mathrm{mg}, 85 \%$) as yellow needles, m.p. $127-128^{\circ} \mathrm{C}$ (methylene dichloride-light petroleum) (Found: C, $54.2 ; \mathrm{H}$, 4.85. $\mathrm{C}_{16} \mathrm{H}_{17}, \mathrm{BrO}_{4}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 4.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1685$ $(\mathrm{C}=\mathrm{O})$ and $1595(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.43\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.96$ and 4.03 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.74[1 \mathrm{H}$, sept., J 6.1, CH $\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 6.75(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.19$ and 8.31 (each $1 \mathrm{H}, \mathrm{d}, J 1.5$, $3-$ and $1-\mathrm{H})$ and $10.08(\mathrm{CHO}) ; \delta_{\mathrm{C}} 21.99\left(2 \times \mathrm{CH}_{3}\right), 56.82$ and $56.93\left(2 \times \mathrm{OCH}_{3}\right), 71.99(\mathrm{CH}), 98.27(\mathrm{C}-6), 101.21(\mathrm{C}-4 \mathrm{a})^{\mathrm{a}}$, $102.53(\mathrm{C}-3)^{\mathrm{b}}, 118.18(\mathrm{C}-8 \mathrm{a})^{\mathrm{a}}, 126.42(\mathrm{C}-1)^{\mathrm{b}}, 135.25(\mathrm{C}-2)^{\mathrm{c}}$, $135.74(\mathrm{C}-8)^{\mathrm{c}}, 154.79(\mathrm{C}-4)^{\mathrm{d}}, 156.49(\mathrm{C}-5)^{\mathrm{d}}, 158.49(\mathrm{C}-7)^{\mathrm{d}}$ and $192.29(\mathrm{CHO}) ; m / z 354\left(\mathrm{M}^{+}, 40 \%\right.$), $352\left(\mathrm{M}^{+}, 40 \%\right), 312$ (100), 310 (100), 297 (19), 295 (19), 269 (36) and 267 (36).

Catalytic Isomerization of the Z-Olefin 32.-A solution of methylene dichloride ($5 \mathrm{~cm}^{3}$) containing bis(acetonitrile)dichloropalladium(II) (25 mg) and the (Z)-olefin 32 ($200 \mathrm{mg}, 0.55$ mmol) was stirred at room temperature for 2 h . The solution was filtered and concentrated. The residue was chromatographed (eluent 5% ethyl acetate-light petroleum) to afford the E-olefin 34 ($170 \mathrm{mg}, 85 \%$) as an oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1615$ and $1590(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.30\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.84(3 \mathrm{H}, \mathrm{dd}, J$ 6 and $1.8,3-\mathrm{CH}_{3}$), 3.87 and 3.92 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.49[1 \mathrm{H}$, sept., $\left.J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 6.29\left(1 \mathrm{H}\right.$, dq, $J 15.6$ and $\left.6,2^{\prime}-\mathrm{H}\right), 6.47$ (1 H, dq, $J 15.6$ and 1.8 , partially obscured by $\left.6-\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 6.51$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and 6.84 and 7.65 (each $1 \mathrm{H}, \mathrm{d}, J 1.5,3-$ and $1-\mathrm{H})$; $m / z 366\left(\mathrm{M}^{+}, 44 \%\right), 364\left(\mathrm{M}^{+}, 44 \%\right), 324(100), 322(100), 285$ (22) and 243 (80).
rel-(1R,2S)-1-(8-Bromo-4-isopropoxy-5,7-dimethoxynaph-thalen-2-yl)propane-1,2-diol 35.-To a stirred suspension of ethyltriphenylphosphonium bromide ($400 \mathrm{mg}, 1.10 \mathrm{mmol}$) in
dry tetrahydrofuran ($10 \mathrm{~cm}^{3}$) cooled to $0^{\circ} \mathrm{C}$, was added butyllithium ($1.08 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv.) under nitrogen. The orange solution was stirred at $0^{\circ} \mathrm{C}$ for 5 min and then cooled to $-78^{\circ} \mathrm{C}$. The aldehyde 29 ($300 \mathrm{mg}, 0.85 \mathrm{mmol}$) dissolved in dry tetrahydrofuran ($3 \mathrm{~cm}^{3}$) was slowly dripped in at such a rate that the temperature of the solution did not rise above $-78^{\circ} \mathrm{C}$. After 15 min at this temperature, the reaction mixture was warmed to room temperature and the reaction monitored by TLC. When no starting material remained (ca. 1.5 h) water was added to the mixture and the organic material extracted into ether. The organic layer was washed several times with brine and the residue obtained upon work-up contained (Z)-1-(8-bromo-4-isopropoxy-5,7-dimethoxynaphthalen-2-yl)-prop-1-ene 32 together with triphenylphosphine oxide. This mixture was immediately converted into the diol 35 ; δ_{H} (on chromatographed olefin) $1.38\left[6 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.92$ (3 H, dd, $J 8$ and $1.8,3^{\prime}-\mathrm{CH}_{3}$), 3.92 and 3.98 (each 3 H , s, $\left.\mathrm{OCH}_{3}\right), 5.54\left[1 \mathrm{H}\right.$, sept., $\left.J 6.5, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.86(1 \mathrm{H}, \mathrm{dq}, J 13$ and $\left.8,2^{\prime}-\mathrm{H}\right), 6.54\left(1 \mathrm{H}, \mathrm{dq}, J 13\right.$ and $\left.1.8,1^{\prime}-\mathrm{H}\right), 6.58(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and 6.72 and 7.75 (each $1 \mathrm{H}, \mathrm{d}, J 2,3-$ and $1-\mathrm{H})$. To the solution of crude Z-olefin 32 in dry pyridine ($4 \mathrm{~cm}^{3}$), was added a solution of osmium tetroxide ($250 \mathrm{mg}, 0.98 \mathrm{mmol}$) in dry ether $\left(6 \mathrm{~cm}^{3}\right)$. The black solution was stirred at room temperature for 30 min after which sodium metabisulphite (1.2 g), water (10 cm^{3}) and pyridine ($10 \mathrm{~cm}^{3}$) were added to it and the whole stirred for 10 min . The reaction mixture was acidified with dilute hydrochloric acid and the organic material extracted with methylene dichloride. The residue obtained upon work-up was purified by chromatography (eluent 30% ethyl acetate-light petroleum) to yield the diol $\mathbf{3 5}$ ($200 \mathrm{mg}, 59 \%$ from aldehyde 32) as off-white needles, m.p. $128-129^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum) (Found: C, $54.1 ; \mathrm{H}, 5.8 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}_{5}$ requires C, $54.1 ; \mathrm{H}, 5.8 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3346(\mathrm{OH})$ and 1616 and $1596(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 1.06\left(3 \mathrm{H}, \mathrm{d}, J 6.4,3^{\prime}-\mathrm{CH}_{3}\right), 1.32\left[6 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 1.89 and 2.61 (each $1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 3.89 and 3.94 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.15(1 \mathrm{H}, \mathrm{dq}, J 4.6$ and 6.4 , partially obscured by $\left.\mathrm{OCH}_{3}, 2^{\prime}-\mathrm{H}\right), 4.48\left[1 \mathrm{H}\right.$, sept., $\left.J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $4.71\left(1 \mathrm{H}, \mathrm{d}, J 4.6,1^{\prime}-\mathrm{H}\right), 6.54(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and 6.78 and 7.27 (each $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{and} 1-\mathrm{H}) ; \delta_{\mathrm{C}} 17.55\left(\mathrm{CH}_{3}\right), 22.13\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 56.68 and $56.92\left(2 \times \mathrm{OCH}_{3}\right), 71.26(2 \times \mathrm{CH}), 72.99[\mathrm{CH}-$ $\left(\mathrm{CH}_{3}\right)_{2}$], $95.65(\mathrm{C}-6), 96.02(\mathrm{C}-4 \mathrm{a})^{\mathrm{a}}, 109.07(\mathrm{C}-3)^{\mathrm{b}}, 110.05$ $(\mathrm{C}-8 \mathrm{a})^{\mathrm{a}}, 117.26(\mathrm{C}-1)^{\mathrm{b}}, 135.28(\mathrm{C}-8), 140.42(\mathrm{C}-2), 154.17(\mathrm{C}-$ $4)^{\mathrm{c}}, 155.24(\mathrm{C}-5)^{\mathrm{c}}$ and $158.51(\mathrm{C}-7)^{\mathrm{c}} ; m / z 400\left(\mathrm{M}^{+}, 79 \%\right)$, 398 ($\mathrm{M}^{+}, 79 \%$), 354 (19), 352 (19), 313 (100), 311 (100), 285 (41), 283 (39), 232 (28) and 204 (76).
rel-(2S,4R,5S)-4-(8-Bromo-4-isopropoxy-5,7-dimethoxynaph-thalen-2-yl)-2,5-dimethyldioxolane 36.-To a solution of the diol $35(60 \mathrm{mg}, 0.15 \mathrm{mmol})$ in benzene $\left(20 \mathrm{~cm}^{3}\right)$ was added acetaldehyde dimethyl acetal ($40 \mathrm{mg}, 0.45 \mathrm{mmol}$) and a catalytic amount of toluene- p-sulfonic acid. The solution was boiled for 30 min in a Dean-Stark apparatus after which it was cooled and washed with aqueous sodium hydrogen carbonate and water. The residue obtained upon work-up was chromatographed (eluent 40% ethyl acetate-light petroleum) to yield the dioxolane $36(47 \mathrm{mg}, 74 \%)$ as colourless cubes, m.p. $89-90^{\circ} \mathrm{C}$ (light petroleum) (Found: C, $56.2 ; \mathrm{H}, 5.65 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{5}$ requires C, $56.5 ; \mathrm{H}, 5.9 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1620$ and $1597(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 0.86(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.4,5^{\prime}-\mathrm{CH}_{3}\right), 1.36\left[6 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.59(3 \mathrm{H}, \mathrm{d}, J 4.6$, $2^{\prime}-\mathrm{CH}_{3}$), 3.93 and 3.96 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.41(1 \mathrm{H}, \mathrm{dq}, J 7.1$ and $\left.6.4,5^{\prime}-\mathrm{H}\right), 4.54\left[1 \mathrm{H}\right.$, sept., $\left.J 6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.09(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.1,4^{\prime}-\mathrm{H}\right), 5.21\left(1 \mathrm{H}, \mathrm{q}, J 4.6,2^{\prime}-\mathrm{H}\right), 6.61(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and 6.74 and $7.70($ each $1 \mathrm{H}, \mathrm{s}, 3-$ and $1-\mathrm{H}) ; \delta_{\mathrm{c}} 16.29$ and $19.96(2 \times$ $\left.\mathrm{CH}_{3}\right), 22.14\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 56.75$ and $56.93\left(2 \times \mathrm{OCH}_{3}\right), 72.73$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 77.00$ and $81.02(2 \times \mathrm{CH}), 95.67(\mathrm{C}-6), 100.22$ $(\mathrm{CH}), 101.01(\mathrm{C}-4 \mathrm{a})^{\mathrm{a}} 109.49(\mathrm{C}-3)^{\mathrm{b}}, 115.41(\mathrm{C}-8 \mathrm{a})^{\mathrm{a}}$, 117.45 $(\mathrm{C}-1)^{\mathrm{b}}, 135.29(\mathrm{C}-8), 138.77(\mathrm{C}-2), 154.06(\mathrm{C}-4)^{\mathrm{c}}, 155.02(\mathrm{C}-5)^{\mathrm{c}}$ and $158.12(\mathrm{C}-7)^{\mathrm{c}} ; m / z 426\left(\mathrm{M}^{+}, 100 \%\right), 424\left(\mathrm{M}^{+}, 100 \%\right), 384$
(18), 382 (18), 340 (90), 338 (90), 325 (39), 323 (40), 259 (22) and 72 (50).
rel-(1S,3S,4R)-3,4-Dihydro-4-hydroxy-6-isopropoxy-7,9-di-methoxy-1,3-dimethylnaphtho[1,2-c] pyran 38 and rel-(1S,3S, 4R)-5-Bromo-3,4-dihydro-4-hydroxy-6-isopropoxy-7,9-dimeth-oxy-1,3-dimethylnaphtho[1,2-c] pyran 39.-To a stirred solution of the dioxolane $36(113 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry methylene dichloride $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under nitrogen, was added titanium tetrachloride $\left(0.3 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}\right)$. The dark solution was immediately warmed to room temperature and stirred for 1 h . The reaction was quenched by the addition of saturated aqueous sodium hydrogen carbonate to the mixture, and the aqueous layer separated and extracted with methylene dichloride and washed with water. The residue obtained upon work-up was chromatographed (eluent 25% ethyl acetate-light petroleum) to afford product 39 [$18 \mathrm{mg}, 15 \%(18 \% \dagger)]$ as a yellow oil (Found: $\mathrm{M}^{+}, 424.0866 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{5}$ requires M, 424.0886); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3413(\mathrm{OH})$ and 1618 and $1594(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 1.28\left(3 \mathrm{H}, \mathrm{d}, J 6.1,3-\mathrm{CH}_{3}\right), 1.32\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.72\left(3 \mathrm{H}, \mathrm{d}, J 6.6,1-\mathrm{CH}_{3}\right), 3.14\left(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 3.89 and 3.93 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.27(1 \mathrm{H}$, sext., $J 6.1,3-\mathrm{H}), 4.43$ [1 H, dsept., $J 2.8$ and $\left.6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $4.71\left(1 \mathrm{H}, \mathrm{s}\right.$ br, becomes d on $\mathrm{D}_{2} \mathrm{O}$ exchange, $\left.J 5.4,4-\mathrm{H}\right), 5.25(1$ H, q, $J 6.6,1-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{d}, J 2.1,8-\mathrm{H})$, and $6.60(1 \mathrm{H}, \mathrm{d}, J 2.1$, $10-\mathrm{H}) ; m / z 426\left(\mathrm{M}^{+}, 20 \%\right), 424\left(\mathrm{M}^{+}, 20 \%\right), 384(21), 382(20)$, 369 (94), 367 (94) and 323 (100). Compound 38 with lower $R_{\text {F }}$ was obtained as white needles $[36 \mathrm{mg}, 40 \%,(45 \% \dagger)]$, m.p. $128-$ $129^{\circ} \mathrm{C}$ (light petroleum) (Found: C, 69.4; H, 7.3. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$ requires $\mathrm{C}, 69.4 ; \mathrm{H}, 7.5 \%$); $v_{\max } / \mathrm{cm}^{-1} 3393(\mathrm{OH})$ and 1616 and $1594(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.35\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.41(3 \mathrm{H}, \mathrm{d}$, partially obscured by isopropoxy, $\left.J 6.3,3-\mathrm{CH}_{3}\right), 1.64(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.5,1-\mathrm{CH}_{3}\right), 1.89\left(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 3.86 and 3.88 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89(1 \mathrm{H}$, dq, partially obscured by $\mathrm{OCH}_{3}, J 8.3$ and $\left.6.3,3-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{t}, J 8.3$, collapses to d on $\mathrm{D}_{2} \mathrm{O}$ exchange, $\left.J 8.3,4-\mathrm{H}\right), 4.54[1 \mathrm{H}$, sept., $J 6.1$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.32(1 \mathrm{H}, \mathrm{q}, J 6.5,1-\mathrm{H}), 6.50(2 \mathrm{H}, \mathrm{s}, 8-$ and $10-\mathrm{H})$ and $6.97(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \delta_{\mathrm{C}} 18.78$ and $20.22\left(2 \times \mathrm{CH}_{3}\right), 22.16$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 55.20$ and $56.20\left(2 \times \mathrm{OCH}_{3}\right), 68.90,69.43$ and $71.26(3 \times \mathrm{CH}), 72.79\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 95.25(\mathrm{C}-5 \mathrm{a})^{\mathrm{a}}, 98.25(\mathrm{C}-$ $8)^{\mathrm{a}}, 108.43(\mathrm{C}-10 \mathrm{a})^{\mathrm{a}}, 114.56(\mathrm{C}-6 \mathrm{a})^{\mathrm{b}}, 126.58(\mathrm{C}-10 \mathrm{a})^{\mathrm{b}}, 133.65$ $(\mathrm{C}-1 \mathrm{a})^{\mathrm{b}}, 134.32(\mathrm{C}-4 \mathrm{a})^{\mathrm{b}}, 154.75(\mathrm{C}-6)^{\mathrm{c}}, 158.17(\mathrm{C}-7)^{\mathrm{c}}$ and 159.04 (C-9) ${ }^{\text {c. }} m / z 346\left(\mathrm{M}^{+}, 47 \%\right), 331$ (32), 289 (100), 271 (25) and 245 (30). A further three compounds isolated from the mixture were the dioxolane 36 ($14 \mathrm{mg}, 12 \%$), diol 35 ($14 \mathrm{mg}, 14 \%$) and alcohol $27(3 \mathrm{mg}, 4 \%)$, each identical with original material.

rel-(1S,3S,4R)-4-Acetoxy-3,4-dihydro-4-hydroxy-6-isopro-

 poxy-7,9-dimethoxy-1,3-dimethylnaphtho[1,2-c] pyran 40.-A solution of compound $38(41 \mathrm{mg}, 0.12 \mathrm{mmol})$ in acetic anhydride $\left(2 \mathrm{~cm}^{3}\right)$ and pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$ was stirred at $55^{\circ} \mathrm{C}$ for 1 h . Methylene dichloride and water were added to the mixture and this solution was washed with dilute hydrochloride acid and then finally with water. The residue obtained upon work-up was chromatographed (eluent 15% ethyl acetate-light petroleum) to yield the acetate $40(45 \mathrm{mg}, 97 \%)$ as colourless rhomboids, m.p. $135-136^{\circ} \mathrm{C}$ (light petroleum) (Found: C , $67.85 ; \mathrm{H}, 7.0 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7.2 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $1733(\mathrm{C}=\mathrm{O})$ and 1616 and $1593(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(3 \mathrm{H}, \mathrm{d}, J 6.2,3-\mathrm{CH}_{3}\right)$, $1.37\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.70\left(3 \mathrm{H}, \mathrm{d}, J 6.5,1-\mathrm{CH}_{3}\right), 2.19$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.18(1 \mathrm{H}, \mathrm{dq}, J 7.6$ and $6.2,3-\mathrm{H}), 4.45\left[1 \mathrm{H}\right.$, sept., J6.1, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.36(1 \mathrm{H}, \mathrm{q}, J 6.5$, $1-\mathrm{H}), 5.82(1 \mathrm{H}, \mathrm{d}, J 7.6,4-\mathrm{H}), 6.48-6.53(2 \mathrm{H}, \mathrm{m}, 8-$ and $10-\mathrm{H})$ and $6.55(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; m / z 388\left(\mathrm{M}^{+}, 30 \%\right), 373(12), 313(21)$ and 271 (100).[^2]Conversion of Compound 39 into 38.-The naphthopyran 39 $(51 \mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in dry tetrahydrofuran (20 cm^{3}) at $-78^{\circ} \mathrm{C}$ under nitrogen and butyllithium (0.59 mmol , 5 mol equiv.) was added to the solution. After this had been stirred for 1 h at $-78^{\circ} \mathrm{C}$ it was allowed to warm to room temperature over 15 min . The reaction was quenched by the addition of water to the mixture which was then extracted with ether. The extract was washed exhaustively with water and the residue obtained upon work-up was chromatographed (eluent 20% ethyl acetate-light petroleum) to afford the naphthopyran 38 ($33 \mathrm{mg}, 81 \%$) whose TLC behaviour and ${ }^{1} \mathrm{H}$ NMR, MS and IR spectra were identical with those of original material described above.
trans-3,4-Dihydro-6-isopropoxy-7,9-dimethoxy-1,3-dimeth-ylnaphtho[1,2-c] pyran 44.-The naphthopyran $15(50 \mathrm{mg}$, 0.14 mmol) was dissolved in dry benzene $\left(5 \mathrm{~cm}^{3}\right)$ and treated with phosphorus tribromide $\left(0.05 \mathrm{~cm}^{3}, 0.53 \mathrm{mmol}\right)$. The solution was stirred at room temperature for 30 min after which the reaction was quenched by addition of dilute aqueous sodium hydrogen carbonate to the mixture. The organic material was extracted into methylene dichloride and the residue obtained upon work-up chromatographed (eluent 10% ethyl acetate-light petroleum) to afford two products. The first fraction yielded compound $42(22 \mathrm{mg}, 38 \%) ; \delta_{\mathrm{H}} 1.40[6 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.49\left(3 \mathrm{H}, \mathrm{d}, J 6.1,3-\mathrm{CH}_{3}\right), 1.73(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.1-\mathrm{CH}_{3}\right), 3.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.32[1 \mathrm{H}$, dq, partially obscured by $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J 8.5$ and $\left.6.1,3-\mathrm{H}\right], 4.51[1 \mathrm{H}$, sept., J 6, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.06(1 \mathrm{H}, \mathrm{d}, J 8.5,4-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{q}, J 6.5,1-\mathrm{H})$, $6.51(2 \mathrm{H}, \mathrm{s}, 8-$ and $10-\mathrm{H})$ and $6.92(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; m / z 410\left(\mathrm{M}^{+}\right.$, 45%), $408\left(\mathrm{M}^{+}, 45 \%\right), 395(20), 393(20), 353(72), 351$ (72), 329 (25), 314 (38), 287 (56), 271 (100) and 257 (46). The second fraction contained compound $43(22 \mathrm{mg}, 39 \%) ; \delta_{\mathrm{H}} 1.39[6 \mathrm{H}, \mathrm{d}, J$ $6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $1.46\left(3 \mathrm{H}, \mathrm{d}, J 6.1,3-\mathrm{CH}_{3}\right), 1.64(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.1-\mathrm{CH}_{3}\right), 3.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.17(1 \mathrm{H}, \mathrm{dq}, J 2$ and $6.1,3-\mathrm{H})$, 4.53 [1 H, sept., J6.1, CH(CH3 $)_{2}$], $5.11(1 \mathrm{H}, \mathrm{d}, J 2,4-\mathrm{H}), 5.49(1$ $\mathrm{H}, \mathrm{q}, J 6.6,1-\mathrm{H}), 6.54(2 \mathrm{H}, \mathrm{s}, 8-$ and $10-\mathrm{H})$ and $6.65(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $m / z 410\left(\mathrm{M}^{+}, 45 \%\right), 408\left(\mathrm{M}^{+}, 45 \%\right), 395(20), 353(75), 351(75)$, 329 (27), 314 (38), 287 (57), 271 (100) and 257 (43). A mixture of compounds 42 and $43(44 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in ethanol ($7.5 \mathrm{~cm}^{3}$) and water ($2.5 \mathrm{~cm}^{3}$). To this mixture was added Raney nickel catalyst (50% in water; 100 mg) and the solution stirred at $60^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched by filtering off the catalyst and washing the filtrate exhaustively with methylene dichloride. The residue obtained upon work-up was chromatographed (eluent 10% ethyl acetate-light petroleum) to yield the naphthopyran $44(25 \mathrm{mg}, 69 \%)$ as white cubes, m.p. $83-84^{\circ} \mathrm{C}$ (light petroleum) (Found: $\mathrm{C}, 72.5 ; \mathrm{H}, 7.75$. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 72.7 ; \mathrm{H}, 7.9 \%\right) ; v_{\max } / \mathrm{cm}^{-1} 1616(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}$ $1.35\left(3 \mathrm{H}, \mathrm{d}, J 6.1,3-\mathrm{CH}_{3}\right), 1.37\left[6 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.66$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.6,1-\mathrm{CH}_{3}\right), 2.71(2 \mathrm{H}$, apparent $\mathrm{d}, J 7.2$, pseudoequatorial and pseudoaxial 4-H), $3.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.25(1 \mathrm{H}$, apparent sext., $J 6.1,3-\mathrm{H}), 4.48[1 \mathrm{H}$, sept., $J 6.1$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.40(1 \mathrm{H}, \mathrm{q}, J 6.6,1-\mathrm{H}), 6.46(1 \mathrm{H}, \mathrm{d}, J 2.2,8-\mathrm{H})$, $6.50(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $6.54(1 \mathrm{H}, \mathrm{d}, J 2.2,10-\mathrm{H}) ; \delta_{\mathrm{C}} 20.35$ and $21.94\left(2 \times \mathrm{CH}_{3}\right), 22.13\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 36.69\left(\mathrm{CH}_{2}\right), 55.15$ and $56.11\left(2 \times \mathrm{OCH}_{3}\right), 62.46$ and $69.80(2 \times \mathrm{CH}), 72.95$ $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 94.79(\mathrm{C}-5 \mathrm{a})^{\mathrm{a}}, 97.67(\mathrm{C}-8)^{\mathrm{a}}, 112.28(\mathrm{C}-10)^{\mathrm{a}}, 114.05$ $(\mathrm{C}-4 \mathrm{a})^{\mathrm{b}}, 126.17(\mathrm{C}-6 \mathrm{a})^{\mathrm{b}}, 131.64(\mathrm{C}-10 \mathrm{a})^{\mathrm{b}}, 134.02(\mathrm{C}-10 \mathrm{~b})^{\mathrm{b}}$, $153.68(\mathrm{C}-6)^{\mathrm{c}}, 157.93(\mathrm{C}-7)^{\mathrm{c}}$ and $158.89(\mathrm{C}-9)^{\mathrm{c}} ; m / z 330\left(\mathrm{M}^{+}\right.$, 39%), 315 (29) and 273 (100).
cis-3,4-Dihydro-6-isopropoxy-7,9-dimethoxy-1,3-dimethyl-naphtho[1,2-c] pyran 47.-The naphthopyran $13(40 \mathrm{mg}, 0.12$ mmol) dissolved in dry benzene $\left(5 \mathrm{~cm}^{3}\right)$ was treated with phosphorus tribromide $\left(0.04 \mathrm{~cm}^{3}, 0.45 \mathrm{mmol}\right)$. The solution was stirred at room temperature for 30 min after which dilute aqueous sodium hydrogen carbonate was added to it. The
organic material was extracted with methylene dichloride and the residue obtained upon work-up chromatographed (eluent 10% ethyl acetate-light petroleum) to afford two products. Compound 45 ($15 \mathrm{mg}, 30 \%$) of higher $R_{\mathrm{F}} ; \delta_{\mathrm{H}} 1.40[6 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.54\left(3 \mathrm{H}, \mathrm{d}, J 6.1,3-\mathrm{CH}_{3}\right), 1.56(3 \mathrm{H}, \mathrm{d}, J 6.1$, $\left.1-\mathrm{CH}_{3}\right), 3.87\left(1 \mathrm{H}, \mathrm{dq}\right.$, partially obscured by $\mathrm{OCH}_{3}, J 8.5$ and $6.1,3-\mathrm{H}$), 3.88 and 3.94 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.54 [1 H , sept., $J 6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.10(1 \mathrm{H}, \mathrm{d}, J 8.5,4-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{q}, J 6.1,1-\mathrm{H})$, 6.50 and 6.56 (each $1 \mathrm{H}, \mathrm{d}, J 2.2,8$ - and $10-\mathrm{H}$) and $7.00(1 \mathrm{H}, \mathrm{s}, 5-$ H); $m / z 410\left(\mathrm{M}^{+}, 46 \%\right), 408\left(\mathrm{M}^{+}, 46 \%\right), 395(20), 393(21), 353$ (75), 351 (75), 329 (24), 314 (38), 287 (55), 271 (100) and 257 (40).

Compound 46 ($17 \mathrm{mg}, 35 \%$) of lower $R_{\mathrm{F}} ; \delta_{\mathrm{H}} 1.40[6 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.42\left[3 \mathrm{H}\right.$, d, partially obscured by $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J 6$, $\left.3-\mathrm{CH}_{3}\right], 1.69\left(3 \mathrm{H}, \mathrm{d}, J 6.1,1-\mathrm{CH}_{3}\right), 3.76(1 \mathrm{H}, \mathrm{q}, J 6,3-\mathrm{H})$, 3.88 and $3.89\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.58[1 \mathrm{H}$, sept., $J 6$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.79(1 \mathrm{H}, \mathrm{s}$ br, $4-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{q}, J 6.1,1-\mathrm{H}), 6.51$ and 6.58 (each $1 \mathrm{H}, \mathrm{d}, J 2.2,8-$ and $10-\mathrm{H})$ and $6.62(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $m / z 410\left(\mathrm{M}^{+}, 45 \%\right), 408\left(\mathrm{M}^{+}, 45 \%\right), 395(20), 393(20), 353(76)$, 351 (76), 329 (25), 314 (38), 287 (55), 271 (100) and 257 (42). A mixture of compounds 45 and $46(32 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in ethanol ($7.5 \mathrm{~cm}^{3}$) and water ($2.5 \mathrm{~cm}^{3}$). To this mixture was added Raney nickel catalyst (50% in water; 100 mg) and the solution was stirred at $60^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched by filtering off the catalyst and washing the filtrate exhaustively with methylene dichloride. The residue obtained upon work-up was chromatographed (eluent 10% ethyl acetate-light petroleum) to yield the naphthopyran 47 (17 $\mathrm{mg}, 64 \%$) as white cubes, m.p. $74-75^{\circ} \mathrm{C}$ (light petroleum) (Found: $\mathrm{M}^{+}, 330.1835 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $M, 330.1831$); $v_{\max } / \mathrm{cm}^{1} 1617(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 1.81\left[9 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and 3$\left.\mathrm{CH}_{3}\right], 1.59\left(3-\mathrm{H}, \mathrm{d}, J 6.1,1-\mathrm{CH}_{3}\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 2.2 , pseudoequatorial $4-\mathrm{H}), 2.79(1 \mathrm{H}$, dd, $J 15.6$ and 10 , pseudoaxial 4-H), 3.74 (1 H , ddq, $J 2.2,10$ and $6.1,3-\mathrm{H}$), 3.88 and 3.89 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.48[1 \mathrm{H}$, sept., $J 6.1$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.44(1 \mathrm{H}, \mathrm{q}, J 6.1,1-\mathrm{H}), 6.46(1 \mathrm{H}, \mathrm{d}, J 2.1,8-\mathrm{H})$, $6.51(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $6.58(1 \mathrm{H}, \mathrm{d}, J 2.1,10-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}\right.$, 37%), 315 (29) and 273 (100).

Acknowledgements

Financial support from the South African Council for Scientific and Industrial Research and the Councils of the Universities of Cape Town and the Western Cape is gratefully acknowledged.

2 R. G. F. Giles, I. R. Green, L. S. Knight, V. R. Lee Son and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1994, preceding paper.
3 A preliminary communication on aspects of the work to be described in this paper has been published: R. G. F. Giles, I. R. Green, L. S. Knight, V. R. Lee Son, R. W. Rickards and B. S. Senanayake, J. Chem. Soc., Chem. Commun., 1991, 287.

4 A. Alexakis, M. J. Chapdelaine, G. H. Posner and A. W. Runquist, Tetrahedron Lett., 1979, 4437.
5 A. B. Smith, M. A. Guaciaro, S. R. Schow, P. M. Wovkulich, B. H. Toder and T. S. Hall, J. Am. Chem. Soc., 1981, 103, 219.
6 M. D. Taylor, G. Minaskanian, K. N. Wizenberg, P. Santone and A. B. Smith, J. Org. Chem., 1982, 47, 3960.

7 K. Isaac and P. Kocienski, J. Chem. Soc., Chem. Commun., 1982, 460.
8 G. S. Cockerill, P. Kocienski and R. Treadgold, J. Chem. Soc., Perkin Trans. 1, 1985, 2093.
9 G. S. Cockerill, P. Kocienski and R. Treadgold, J. Chem. Soc., Perkin Trans. 1, 1985, 2101.
10 M. H. Hopkins and L. E. Overman, J. Am. Chem. Soc., 1987, 109, 4748.
11 T. M. Wilson, R. Kocienski, K. Jarowicki, P. M. Hitchcock, A. Faller and S. F. Campbell, Tetrahedron, 1990, 46, 1767.
12 T. Mukaiyama, Angew. Chem., Int. Ed. Engl., 1977, 16, 817.
13 T. Mukaiyama, Org. React., 1982, 28, 203.
14 V. R. Lee Son, M.Sc. Thesis, University of Cape Town, 1986.
15 (a) S. E. Denmark and N. G. Almstead, J. Am. Chem. Soc., 1991, 113, 8089; (b) S. E. Denmark and N. G. Almstead, J. Org. Chem., 1991, 56, 6458; (c) S. E. Denmark and N. G. Almstead, J. Org. Chem., 1991, 56, 6485.
16 T. Sala and M. V. Sargent, J. Chem. Soc., Perkin Trans. I, 1979, 2593.
17 R. G. F. Giles, I. R. Green, V. I. Hugo, P. R. K. Mitchell and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1984, 2383.
18 O. Mancera, G. Rosenkrantz and F. Sondheimer, J. Chem. Soc., 1953, 2190.
19 R. G. F. Giles, V. R. Lee Son and M. V. Sargent, Aust. J. Chem., 1990, 43, 777.
20 T. A. Chorn, R. G. F. Giles, I. R. Green and P. R. K. Mitchell, J. Chem. Soc., Perkin Trans. I, 1983, 1249.

21 T. Kometani, Y. Takeuchi and E. Yoshii, J. Chem. Soc., Perkin Trans. 1, 1981, 1197.
22 R. G. F. Giles, I. R. Green, V. I. Hugo, P. R. K. Mitchell and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1983, 2309.
23 R. G. F. Giles and M. L. Niven, unpublished results.
24 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. I, 1985, 2307.
25 R. G. F. Giles, I. R. Green, L. S. Knight, V. R. Lee Son, P. R. K. Mitchell and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1994, 853.
26 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
27 L. E. Overman, Selectivities in Lewis Acid Promoted Reactions, ed. D. Schinzer, Kluwer Academic Publishers, 1989, 1.

References

1 D. W. Cameron, R. I. T. Cromartie, D. G. I. Kingston and A. R. Todd, J. Chem. Soc., 1964, 51.

[^0]: \dagger Present address: School of Mathematical and Physical Sciences, Murdoch University, WA 6150, Australia.
 \ddagger For clarity, the numbering of the naphthalenic substituents is consistent with that used for the naphthalenes in the preceding two papers.
 § Structures of synthetic compounds depicted as single enantiomers represent racemates.

[^1]: \dagger Yields in parentheses are based on unrecovered starting material.

[^2]: \dagger Yields in parentheses are based on unrecovered starting material.

